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Abstract

This paper proposes a method to estimate spillover effects of a random treatment using a non-
random sample of individuals for whom the analyst can observe their outcomes, i.e., nonrandom
sample selection. Although randomized experiments facilitate comparisons between treated and
control groups at the baseline, they cannot guarantee that the groups are comparable when
there is endogenous sample selection. The proposed method employs an exposure monotonicity
assumption that extends the conventional Lee bounds to general exposures to treatment. Under
this assumption, we show how to compute the bounds for a spillover estimand that allows for the
inclusion of covariate adjustments and network dependence, where statistical inference follows
a design-based approach. The framework is extended with a conditional exposure monotonicity
assumption that allows for the inclusion of high dimensional covariates via machine learning.
The empirical application presents the new method to analyze spillover effects of a randomized
experiment on computer utilization in students from public schools.
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1 Introduction

Spillover effects denote the impact of a treatment or intervention on individuals not directly tar-

geted by the treatment. Estimating the magnitude of spillovers allows researchers to grasp the

broader impacts of interventions and shed light on their effects beyond the treated group. How-

ever, in certain scenarios where researchers seek to estimate causal effects using nonrandom selected

samples, treatment randomization is not enough to uniquely identify widely used causal estimands

such as average treatment effects and average spillover effects (Heckman, 1979; Horowitz and Man-

ski, 2000). For example, survey and sample attrition create missing outcome data, leading to an

endogenous sample selection issue unless outcomes are assumed to be missing at random. Another

common situation in empirical research involves analyzing extensive versus intensive margins. As

discussed in Chen and Roth (2023), point-identification of the intensive margin becomes challenging

when the extensive margin is of significance. Without imposing strong assumptions, the intensive

margin is only partially identified. When the focus shifts to the estimation of spillover effects, the

widely used Lee bounds for bounding treatment effects become inapplicable (Lee, 2009).

This paper presents a novel estimator designed to bound spillover effects in scenarios of en-

dogenous sample selection. The method relies on an exposure monotonicity condition that restricts

how individuals select into the sample through their exposures to treatment. Using the approach

discussed in Lee (2009), we construct new bounds by trimming the outcome distribution under

the worst-case scenario. The proposed spillover bounds are designed to account for the possible

misspecification of the exposure mapping in the spirit of Leung (2022). Essentially, researchers

do not need to know precisely how the treatment is transmitted through the network, as long as

interference levels decline with network distance. Similar assumptions are imposed on the selection

mechanism. Monte Carlo simulations show that the proposed estimator performs well in finite

samples and is robust to misspecification of both the outcome and selection models.

The estimator uses a weighted least squares approach, leveraging the propensity score of the

exposure mapping, which is numerically equivalent to the Hajek-based representation (Aronow and

Samii, 2017). This approach allows for easy incorporation of covariates, improving precision in the

outcome equation (Gao and Ding, 2023). The design also accommodates covariates in the selection

equation, extracting information that can tighten the bounds. It supports the inclusion of regu-

larized high-dimensional semiparametric estimators and flexible nonlinear methods to predict the

probability of always being observed and conditional quantiles of the outcome. To avoid overfitting

bias, it employs Neyman orthogonal moment conditions derived from the weighted least squares

form and cross-fitting (Chernozhukov et al., 2018). A Python package, spillover-effects, implement-

ing this method with post-lasso and automatic machine learning options is available for general

use.

Understanding how to identify and estimate treatment effects under nonrandom sample selec-

tion has progressed significantly. Seminal work by Heckman (1974) addressed the classical sample

selection problem where point-identification relies on functional form and valid instruments. Cher-

nozhukov et al. (2023) examined a semiparametric generalization of the Heckman selection model
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using distribution regressions and Bia et al. (2024) controlled for potentially high-dimensional co-

variates using double machine learning. These flexible frameworks allow for patterns of heterogene-

ity and separates from normality on the error structure but still requires exclusion restrictions or

selection-on-observables. Seminal work on partial identification due to sample selection was intro-

duced by Horowitz and Manski (1998). Zhang and Rubin (2003) and Lee (2009) proposed worst-case

scenario bounds of the average treatment effect among individuals that always select into the sam-

ple (always-observed). The primary assumption, called monotonicity, restricts the treatment from

inducing selection in some individuals, while simultaneously preventing others from being selected.

Under this assumption, Huber and Mellace (2015) also derived sharp bounds for the compliers,

defiers, and observed population.

More recently, Semenova (2023) expanded the Lee bounds by introducing conditional mono-

tonicity to address diverse responses in selection. Leveraging regularization techniques, Semenova

enables the incorporation of potentially high-dimensional covariates, thereby tightening the bounds

on the causal parameter. Similarly, Samii et al. (2023) used generalized random forests to narrow

nonparametric bounds on treatment effects. On the other hand, Heiler (2023) focused on estab-

lishing bounds for heterogeneous causal effects for always-observed individuals. For continuous

treatments, Lee (2024) established a sufficient monotonicity condition to bound the effect of treat-

ment intensity. Olma (2021) analyzed, more generally, how to estimate truncated outcomes treating

the conditional quantile function as a nuisance parameter. Bartalotti et al. (2023) instead studied

identification of marginal treatment effects when there is sample selection.

The literature considering the identification and estimation of spillover effects has focused on

estimating spillovers that are robust to exposure mapping misspecification. Leung (2022), Savje

(2023), and Aronow and Samii (2017) study identification and estimation of effects from an expo-

sure mapping similar to the effective treatment definition of Manski (2013). Hoshino and Yanagi

(2021) extend Leung’s framework to incorporate non-compliance and interference, while Gao and

Ding (2023) explore Leung’s framework with covariate adjustment. However, none of the existing

spillover effect estimators can handle scenarios involving endogenous sample selection. This paper

contributes to the literature by introducing the first approach to partially identify and estimate

network effects under nonrandom sample selection.

We apply the method using data from Beuermann et al. (2015) to demonstrate its effectiveness.

They implemented a randomized controlled trial that provided laptops to students and analyzed

the effects on computer utilization and other educational outcomes. When analyzing the intensive

margin effect of the program, the selected sample of interest is students with a positive number

of minutes of computer use. The previous analysis of the intervention suggests an increase in

computer utilization at the intensive margin when students are directly treated, but no evidence

of spillovers. The estimated spillover bounds instead show evidence of positive direct and spillover

effects. Across different specifications, we consistently find positive direct effects among students

with friends who won the lottery. In addition, the spillover bounds and their confidence intervals

show positive effects of the intervention. Particularly, having also a friend who won the laptop
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lottery increases computer use by 24 to 33 percent, using post-lasso.

In addition to the main contribution of introducing an estimator for bounding spillover effects

with nonrandom selected samples, this paper contributes to the literature in two additional ways.

First, the proposed estimator offers an alternative design-based inference for the popular Lee bounds

under the assumption of no interference. Second, the proposed spillover bounds provide a framework

for extending the Lee bounds to accommodate multiple treatments. The monotonicity assumption

employed in this paper is related to the recent literature of instrumental variables with multiple

instruments (Mogstad et al., 2021; Goff, 2023; Hoff et al., 2023).

The subsequent sections are structured as follows. Section 2 sets the groundwork for defining

the estimand of interest. Section 3 outlines the assumptions under which the estimand becomes

partially identified. Section 4 details the estimation and inference procedures. Section 5 shows

numerical results from Monte Carlo experiments while Section 6 demonstrates the application of

our method to a field experiment. Section 7 concludes and discusses the implications of our findings.

2 Spillover Effects

In this section, we define spillover effects within a finite population model where the treatment

vector is the sole stochastic component. The model considers nonrandom sample selection and net-

work interference, incorporating exposure mappings to reduce the dimensionality of treatments and

the network into a vector, which is crucial for specifying potential outcomes. The framework allows

for potential misspecification of this exposure mapping, so potential outcomes do not necessarily

align with their respective exposure representations. Additionally, the framework accommodates

sample selection with network interference, defining expected potential selection when the sample

selection mechanism is specified correctly or incorrectly.

The core estimand of interest is the average spillover effect for subjects selected into the sample

irrespective of treatment exposure. We introduce a sample selection model with network interfer-

ence that extends Heckman’s model, incorporating social interactions in both the outcome and se-

lection equations. This model of peer effects captures how individuals’ outcomes and self-selections

are influenced by their network connections. This model is used to analyze the implications of

the assumptions and to identify the proportion of individuals selected into the sample regardless

of treatment exposure. This analysis provides the foundation for deriving sharp bounds for the

spillover estimand.

2.1 Setup

Consider a finite population model where D is the realized treatment vector and the only stochastic

component. Let d = (di)
n
i=1 ∈ {0, 1}n be the potential treatment vector and Yi(d) the potential

outcome which is a mapping from {0, 1}n to R. To model the presence of spillover effects under

nonrandom sample selection, let Si(d) be a sample selection indicator that depends on the potential

treatment vector and takes value 1 if unit i is selected into the sample and 0 otherwise. We
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denote the realization of the selection indicator and the outcome for individual i as Si = Si(D)

and Yi = Yi(D), respectively. As an example, Chen and Roth (2023) define sample selection as

Si = 1{Yi > 0} when analyzing the intensive margin of a treatment.

There is a single network represented by an adjacency matrix A with entry Aij = 1 if i and j

are connected and 0 otherwise. If there are no strategic interactions with respect to the realized

treatment vector D, the network, the potential outcomes, and the potential selection functions are

fixed in the finite population framework. Following the network interference literature (Aronow and

Samii, 2017; Manski, 2013), define an exposure mapping T (·) that maps network and treatments

into a low-dimensional vector. The following empirical examples illustrate two specific ways to

define an exposure mapping.

Example 1. Effect of savings programs on asset ownership. Brune et al. (2021) study the effect

of a deferred wages savings scheme on downstream outcomes like asset ownership. They define the

exposure mapping as Ti = (Di,
∑
AijDj), which contains the treatment status of worker i and the

number of treated coworkers.

Example 2. Effect of input subsidies on agricultural productivity. Carter et al. (2021) study

the effect of input subsidy programs on maize yields. They define the exposure mapping as Ti =

(Di,1{
∑
AijDj > med(AD)}), which contains the treatment status of farmer i and an indicator

for when the total treated network contacts of farmer i is greater than the median of total treated

network contacts for all farmers (med(AD)).

The definitions of exposure mapping in the two examples above take the n×1 vector of potential

treatments and the n×n adjacency matrix representing the network into a two-dimensional exposure

vector. Correct specification of the exposure mapping requires that Yi(d) = Ỹi(t) for t ∈ T , where

Ỹi(t) maps the low-dimensional exposure to potential outcomes and T represents the range of Ti.

Following Leung (2022) and Savje (2023), we use a more robust definition of exposure that captures

misspecification. In general, the expected potential outcome from exposure t is

Ȳi(t) =
∑

d∈{0,1}n
Yi(d) Pr (D = d | Ti = t) .

This framework also allows for spillovers in the sample selection mechanism. We then define

analogs for the expected potential selection S̄i(t) when the sample selection mechanism is misspec-

ified and S̃i(t) when properly specified. When the expected potential selection S̄i does not depend

on the exposure mapping Ti, the outcomes are missing at random. The estimand of interest is

the average spillover effect for subjects who are selected into the sample regardless of treatment

exposure

τ
(
t, t′
)
= E

[
Ȳi(t)− Ȳi(t

′) | S̄i(t) = 1, S̄i(t
′) = 1

]
. (1)

The average spillover effect for the always-observed group generalizes the estimand of inter-

est discussed by Zhang and Rubin (2003) and Lee (2009) for any exposure mapping Ti. When

the exposure mapping is correctly specified as the direct treatment effect Ti = Di with exposures

t = 1, t′ = 0; then τ (t, t′) reduces to the average treatment effect for always-observed individuals.
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Furthermore, equation (1) can be interpreted as a generalization of the previous estimand to multi-

ple treatments. Before discussing identification of τ (t, t′), we introduce a model of sample selection

with homogeneous treatment effects in the presence of network interference.

2.2 A Sample Selection Model with Network Interference

We provide an explicit model that determines sample selection when individuals interact with each

other through a network. Partial identification of the spillover estimand τ (t, t′) does not require

a model of sample selection, but this model serves to illustrate the assumptions that are needed.

We extend Heckman’s conventional model of sample selection (Heckman, 1974, 1979) to account

for social interactions on the outcome and selection equations. The model is as follows:

Y ∗
i = α1 + β1

∑n
j=1AijY

∗
j∑n

j=1Aij
+ γ1Di + Ui,

S∗
i = α2 + β2

∑n
j=1AijS

∗
j∑n

j=1Aij
+ γ2Di + Vi,

Yi = 1{S∗
i > 0} · Y ∗

i ,

where Y ∗
i and S∗

i are latent variables for the outcome and the propensity to be selected, Di is the

realized treatment, Xi is a vector of covariates, and Ui and Vi are error terms. Due to the censored

selection process, only outcomes Yi are observed.

This particular model of sample selection features a linear-in-means specification1, which is

very common in the literature of peer effects (Boucher et al., 2024). As an example, let outcomes

represent wages, treatment refers to participation on a job training program, selection denotes

employment status, and the network describes friendships. This model expresses individual wages as

a function of the average wages of her friends and her own participation in the program (Cornelissen

et al., 2017). The difference with the traditional Heckman model is that SUTVA does not hold

since outcomes and selection feature network dependence. This is clear from the reduced form of

the linear-in-means sample selection model:

Y∗ =
α1

1− β1
ι+ γ1D+ γ1β1

∞∑
k=0

βk1 Ā
k+1D+

∞∑
k=0

βkĀkU,

S∗ =
α2

1− β2
ι+ γ2D+ γ2β2

∞∑
k=0

βk2 Ā
k+1D+

∞∑
k=0

βkĀkV.

The reduced form representation uses the row-normalized adjacency matrix Ā where each entry

is divided by the total sum of its row. To ensure that the model has an unique solution, assume

1This specification only features endogenous peer effects, as is commonly referred in the literature to the effect that
outcome of individual j has on i, denoted by β1 and β2. An extension with exogenous peer effects, stemming from
D and observed characteristics X, is also possible with additional notation. An important challenge on estimating
β2 in this linear-in-means sample selection model is that the selection equation presents multiple equilibria problems
(Brock and Durlauf, 2001; Tamer, 2003; Boucher and Bramoullé, 2020).
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that Y∗ and S∗ are continuously distributed and that the coefficients β1 and β2 are restricted

to be less than one in absolute value. This representation shows that the latent outcomes and

selection propensities depend not only of direct treatment status, but also on the treatment of

others weighted by the endogenous peer effects βk1 and βk2 (Bramoullé et al., 2009). Powers of

the adjacency matrix Ā represent the number of connections away from individual i that affect

her outcomes and self-selection decision. In the example, wages and selection depend on friends,

under Ā, and on indirect friendships through Āk with k > 1. However, this indirect effects are

down-weighted since peer effects are |β| < 1.

In the next section, we restrict the selection equation to be correctly specified using the potential

outcomes model framework. This restriction is fundamental to identify the proportion of individuals

that are selected into the sample regardless of treatment exposure. Here, we analyze the implications

of this assumption using the linear-in-means sample selection model. To simplify notation, assume

that the dependence on treatment exposure vanishes after k = 0 for both outcomes and selection.

In addition, only the outcome equation features correlated effects, i.e., corr(Ui, Uj) ̸= 0. This leads

to

Y ∗
i =

α1

1− β1
+ γ1Di + γ1β1

n∑
j=1

ĀijDj + Ui + β1

n∑
j=1

ĀijUj ,

S∗
i =

α2

1− β2
+ γ2Di + γ2β2

n∑
j=1

ĀijDj + Vi.

Under this simplified version of the model, without loss of generality, let the exposure mapping

be Ti = (Di,1{
∑
ĀijDj > 0}) and t = (0, 1), t′ = (0, 0). The observed means of the latent outcome

under each exposure are

E [Y ∗
i | A, Ti = t, S∗

i ≥ 0] =
α1

1− β1
+ γ1β1 + E

[
Ui | A, Ti = t, Vi ≥ − α2

1− β2
− γ2β2

]
+ β1

n∑
j=1

ĀijE

[
Uj | A, Ti = t, Vi ≥ − α2

1− β2
− γ2β2

]
,

E
[
Y ∗
i | A, Ti = t′, S∗

i ≥ 0
]
=

α1

1− β1
+ E

[
Ui | A, Ti = t′, Vi ≥ − α2

1− β2

]
+ β1

n∑
j=1

ĀijE

[
Uj | A, Ti = t′, Vi ≥ − α2

1− β2

]
.

This representation characterizes the bounds over treatment effects when SUTVA does not hold.

When there is no interference in the selection and outcome equation (β1 = β2 = 0), the means reduce

to the conventional case where Lee bounds can be used. Furthermore, we can recover the spillover

effect, which in this case is γ1β1, by disentangling the proportion of inframarginal individuals

(Vi ≥ − α2
1−β2

) and marginal ones (− α2
1−β2

− γ2β2 ≤ Vi < − α2
1−β2

). Under the approach of Zhang and

Rubin (2003) and Lee (2009), trimming the outcome using the proportion p =
Pr(S∗

i ≥0|Ti=t′)
Pr(S∗

i ≥0|Ti=t) results

in worst-case scenario bounds.
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The main restriction that we impose on the sample selection model is that we can correctly

predict when S∗
i ≥ 0 for all i. For instance, with our previous model, even on the presence

of correlated effects on the selection equation (adding β2
∑n

j=1 ĀijVj), we assume that we can

still identify the proportion of inframarginal and marginal individuals. Incorrectly assuming that

exposure does not vanish when k = 1, adds the term γ2β
2
2

∑n
j=1 Ā

2
ijDj to the selection equation.

The elements Ā2
ij denote a weighted sum of all the paths of length two between i and j. If the

chosen exposure mapping Ti does not capture this effect, and γ2β
2
2 is strong enough to induce

individuals to be selected into the sample, then the trimming proportion p will not be correctly

identified.

Under the linear-in-means sample selection model, situations where the peer effects on the

selection equation are small provide ideal conditions to correctly identify the proportion of marginal

individuals. In these situations, these can be guaranteed even when the exposure mapping is

misspecified. Additionally, a weak network dependence assumption where interference decays with

distance can formalize this condition. In the next section, we provide a formal definition of the

necessary assumptions to obtain sharp bounds for the spillover estimand in equation (1).

3 Partial Identification

In this section, we provide a formal definition of the necessary assumptions to obtain sharp bounds

for the spillover estimand in equation (1). The method relies on an “exposure monotonicity”

condition, which helps to define how exposure to treatment influences whether individuals are

included in the sample. By trimming the outcomes based on worst-case scenarios, we can construct

what are known as “spillover bounds.” When introducing covariates, a weaker version of this

monotonicity assumption can be used to tighten the bounds. The following subsections discuss the

assumptions and partial identification of the estimand for the case with and without covariates.

3.1 Spillover Bounds

In general, unless the researcher is willing to impose strong assumptions on the sample selection

mechanism, spillover effects are partially identified. This section discusses how to bound spillover

effects using an exposure monotonicity condition. The spillover bounds are constructed using

Lee’s approach to trim the outcome distribution under the worst-case scenario. Given the finite

population model, random assignment of treatment guarantees that Yi(d) and Si(d) are independent

of Di. In addition, since the network is fixed, independence ofA and Di rules out potential strategic

interactions occurring because of the treatment assignment.

Assumption 3.1 (Correct Specification). S̃i(t) = S̄i(t)

Assumption 3.1 is necessary to pin down the monotonicity of selection due to exposure. In

practice, the exposure mapping selected by the researcher must provide enough information of the

sample selection mechanism. That is, we can properly predict when individual i selects into the
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sample even if the chosen exposure mapping is misspecified. In our sample selection model with

network interference, this implies that the exposure mapping Ti correctly determines when Si = 12.

Therefore, having a proper specification of the sample selection mechanism guarantees that this

situation holds.

Assumption 3.2 (Exposure Monotonicity). S̄i(t) ≥ S̄i(t
′) for t ≥ t′ in the vector sense

This monotonicity condition generalizes Lee’s monotonicity for any exposure mapping. Simi-

larly, exposure monotonicity implies that treatment exposure can only affect sample selection in

“one direction”. Since the treatment exposure can be direct or social, inconsistencies of this ex-

posure monotonicity can arise depending on the exposure of interest. Mogstad et al. (2021) and

Goff (2023) discuss the implications of monotonicity with multiple instruments in the context of

instrumental variables. Even though in this context monotonicity refers to how treatment affects

sample selection, a “multiple treatment” analog can be argued in this situation. Hence, exposure

monotonicity relates to the actual monotonicity assumption in Mogstad et al. (2021) and the vector

monotonicity described by Goff (2023).

As an example, consider the two-dimensional exposure mapping Ti = (Di,1{
∑
AijDj > 0}),

where the first element refers to the direct treatment and the second wether at least one connection

received treatment. Under this exposure mapping, the monotonicity assumption implies that being

exposed to the treatment either directly or indirectly (through a connection) weakly increases

the likelihood of being selected into the sample. Under the previous assumptions, the following

proposition shows how to construct the bounds for the spillovers estimand in equation (1).

Proposition 1 (Spillover Bounds). Under assumptions 3.1 and 3.2, τL0 and τU0 are sharp lower

and upper bounds for the average spillover effect τ(t, t′), where

τL0 = E [Yi | Yi ≤ qp0 , Ti = t, Si = 1]− E
[
Yi | Ti = t′, Si = 1

]
τU0 = E [Yi | Yi ≥ q1−p0 , Ti = t, Si = 1]− E

[
Yi | Ti = t′, Si = 1

]
p0 =

Pr (Si = 1 | Ti = t′)

Pr (Si = 1 | Ti = t)

qu is the u-quantile of Y given T = t, S = 1

Proposition 1 generalizes Lee bounds where p0 is the proportion of individuals that are always

selected regardless of treatment exposure. The proof in Appendix A shows that spillover effects

µ(t′) = E [Yi | Ti = t′, Si = 1] from the control group are point-identified (when p0 > 0). On

the other hand, the spillover effects µ(t) from the treated group are bounded by the worst case

scenarios µ∗(t) ∈ {µL, µU}. Under exposure monotonicity, the lowest value the spillover effects

can take is when the proportion p0 of individuals with the highest Y are all compliers. Therefore,

trimming µ∗(t) from above at the p0 quantile obtains the worst-case of the lower bound. Likewise,

the highest value is determined by trimming the 1 − p0 quantile from below. Moreover, we can

2Alternatively, we can impose restrictions on the sample selection using a model of approximate network interfer-
ence as in Leung (2022). The idea is that interference decreases with distance and can be bounded.
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modify the assumption that every individual has the same probability of being selected relaxing

the monotonicity condition with covariates.

3.2 Bounds with Covariates

Covariates can play an important role to tighten the bounds. If covariates explain individual’s

likelihood to be observed or their choices to engage in the outcome, incorporating them can tighten

the bounds or even achieve almost point-identification. To create moment conditions that in-

corporate covariates, we rely on a weaker formulation of assumption 3.2. Define the network

controls Xi = h(i,W,A) as a mapping of the potentially high-dimensional covariates W and net-

work A. Also define the conditional probability to be selected into the sample when treated as

s(t, x) = Pr(Si = 1 | Ti = t,Xi = x) and the conditional share of selected individuals between the

two exposure groups as p0(x) = s(t′, x)/s(t, x).

Assumption 3.3 (Conditional Exposure Monotonicity). For the covariate set X = X+ ∪ X− and

any t ≥ t′ in the vector sense. When X ∈ X+, S̄i(t) ≥ S̄i(t
′). And if X ∈ X−, S̄i(t) ≤ S̄i(t

′).

Under assumption 3.3, we can partition the set of network controls on individuals that are

induced by the treatment into be selected X+ := {x : s(t, x) > s(t′, x)} and that are discouraged

into be selected when treated X− := {x : s(t, x) < s(t′, x)}. This conditional exposure monotonicity

generalizes the weak monotonicity by Heiler (2023) and conditional monotonicity by Semenova

(2023)3 for general exposure mappings Ti.

Given the partition of the covariates, define the conditional u-quantiles of Y as q(u, x) =

inf {q : u ≤ P (Yi ≤ q | Ti = t, Si = 1, Xi = x)} and the nuisance parameters η0(x) = {s(t, x), s(t′, x),
q(u, x)}. Semenova (2023) shows how to represent the lower and upper bound of Equation (1) using

a semiparametric moment function. Under Assumption 3.3, the lower bound of Proposition 1 is

τL0 =
E
[
1{p0(X) ≤ 1} ·mL

+(η0) + 1{p0(X) > 1} ·mL
−(η0)

]
E [min (s(t′, X), s(t,X))]

,

mL
+(η) =

1i{t}
πi(t)

· Si · Yi · 1{Yi ≤ q(p(X), t,X)} − 1i{t′}
πi(t′)

· Si · Yi,

mL
−(η) =

1i{t}
πi(t)

· Si · Yi −
1i{t′}
πi(t′)

· Si · Yi · 1{Yi ≥ q(1− 1/p(X), t′, X)},

3We do not consider the case where there are individuals that are indifferent to be selected with either exposure
X0 := {x : s(t, x) = s(t′, x)}. This rules out the case where treatment exposure does not affect selection since this
leads to point-identification. However, Semenova (2023) accounts for this in the identification results.
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and the upper bound is

τU0 =
E
[
1{p0(X) ≤ 1} ·mU

+(η0) + 1{p0(X) > 1} ·mU
−(η0)

]
E [min (s(t′, X), s(t,X))]

,

mU
+(η) =

1i{t}
πi(t)

· Si · Yi · 1{Yi ≥ q(1− p(X), t,X)} − 1i{t′}
πi(t′)

· Si · Yi,

mU
−(η) =

1i{t}
πi(t)

· Si · Yi −
1i{t′}
πi(t′)

· Si · Yi · 1{Yi ≤ q(1/p(X), t′, X)}.

The bounds [τL0 , τ
U
0 ] are sharp bounds for the average spillover effect of the group that is always

observed. They differ from Semenova’s in that they incorporate the generalized propensity score

πi(t), and the general vectors {t, t′} can also represent multiple treatments.

These bounds do not involve the covariate density function fX(x | S̄(t) = S̄(t′) = 1) and as long

as we can accurately predict the nuisance parameter η(x), the bounds will be tighter. This is related

to our discussion on misspecification of the sample selection mechanism. A precise prediction of

η(x) correctly determines where p0(x) lies, and consequently which individual outcomes to trim.

Even if every individual belongs to the group that is encouraged (X+) or discouraged (X−), using a

flexible semiparametric estimation of the trimming quantile can potentially help tighten the bounds.

Section 4 indicates how to estimate the bounds and conduct inference to account for the network

dependence of the potential outcomes.

4 Estimation and Inference

This section constructs a Hajek-based estimator for the bounds described in proposition 1. The es-

timator is based on weighted least squares (WLS) and takes advantage of the generalized propensity

score. First, we describe the estimation procedure that resembles Lee bounds using WLS. When

the weighting matrix of the WLS contains the inverse of the propensity scores, this is numerically

equivalent to the Hajek estimator. Then, the estimation procedure is extended to cover multiple

treatments and covariate adjustment. If covariates are included, the procedure is divided in two

stages to allow for flexible estimation of nuisance parameters. Finally, we show asymptotic results

of the estimators accounting for network dependence.

4.1 Estimation

The Hajek representation is motivated by Gao and Ding (2023) who show that Hajek estimators

have an inherent connection to the weighted least square (WLS) formulation. There are two

advantages to using this representation: (1) Hajek estimators ensure location invariance of the

outcome and has been shown to be more stable and efficient; and (2) the WLS formulation allows

to cast the estimator into a generalized methods of moments (GMM) framework, which is useful

for inference.4

4Using a Horvitz-Thompson representation is also possible and Semenova (2023) uses a similar formulation when
introducing high-dimensional covariates. Appendix A shows the equivalent estimators using this representation.
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The Hajek-based estimators for the upper and lower bound feature the generalized propensity

scores including the possibility of sample selection (Imbens, 2000). The bounds τ̂L and τ̂U , trimming

proportion p̂, and quantile ŷu are:

τ̂L = G
[
Z⊤
LWZL

]−1
Z⊤
LWY

τ̂U = G
[
Z⊤
UWZU

]−1
Z⊤
UWY

p̂ =

∑
wi(t

′) · Si∑
wi(t′)

/∑
wi(t) · Si∑
wi(t)

q̂u = min

{
q :

∑
wi(t) · Si · 1{Yi ≤ q}∑

wi(t) · Si
≥ u

}
(2)

where ZL and ZU are n × 2 matrices with rows ZL,i = [1i{t}1
{
Yi ≤ q̂p̂

}
, 1i{t′}] and ZU,i =

[1i{t}1
{
Yi ≥ q̂1−p̂

}
, 1i{t′}], respectively. W is a diagonal matrix with elements wi = 1

πi(Ti)
.

G ≡ [1 − 1] is a row vector and Y is the vector of observed outcomes YiSi. The propensity

score is defined as πi(t) = Pr (1i{t}) under the randomization protocol, the treatment indicator

1i{t} = 1{Ti = t}, and the weights wi(t) =
1i{t}
πi(t)

.

The estimation of [τ̂L, τ̂U ] resembles the procedure to calculate the Lee bounds. First, calculate

the proportion p̂ using the generalized propensity score. Second, obtain the quantiles q̂p̂ and q̂1−p̂

from the distribution of Y . Last, calculate the worst-case scenario bounds [τ̂L, τ̂U ] using weighted

least squares. Unlike conventional Lee bounds, the dependence of individuals’ outcomes changes

how to conduct inference, which is discussed in Subsection 4.4.

4.2 Multiple Treatment

The spillover bounds can be extended to cases with multiple treatments, which is useful when

the researcher wants to account for both direct and spillover effects. With multiple treatments,

the exposure mapping is defined as Ti = (Di,1{
∑
AijDj > 0}), allowing for four possible values:

individuals who are directly treated and have at least one treated friend (1, 1), individuals who are

neither directly treated nor have treated friends (0, 0), individuals who are only directly treated

(1, 0), and individuals who only have a treated friend (0, 1).

To accommodate multiple treatments under the mapping Ti = (Di,1{
∑
AijDj > 0}), we adjust

equation (2). The treatment indicator 1i{t} can be modified to the vector [1i{(1, 1)},1i{(0, 1)}]
for the treated group, and [1i{(1, 0)},1i{(0, 0)}] for the control group. The row vector G becomes
1
2 [1, 1,−1,−1] to contrast exposure effects due to spillovers. However, this contrast of exposures

is not allowed under Assumption 3.2 because while it is possible to assume S̄i(1, 1) ≥ S̄i(1, 0) and

S̄i(1, 1) ≥ S̄i(0, 0), the assumption S̄i(1, 0) ≥ S̄i(0, 1) is not defined.

A valid estimand for the overall effects, using the exposure mapping Ti = (Di,1{
∑
AijDj > 0}),

can be defined as follows. The group exposed to treatment is represented by the three-dimensional

treatment indicator [1i{(1, 1)},1i{(1, 0)},1i{(0, 1)}]. The control group is represented by 1i{(0, 0)},
which includes individuals who are neither directly treated nor have any treated connections. By
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using the row vector G ≡ [13 ,
1
3 ,

1
3 ,−1], this estimand captures the effects of any type of exposure,

whether direct or social, to the treatment.

4.3 Covariate Adjustment

Estimating the bounds with covariate adjustment involves first estimating a vector of nuisance

parameters η̂, which includes selection probabilities and conditional quantiles. The estimation pro-

cess is divided into two stages. In the first stage, selection probabilities and outcome quantiles are

obtained using semiparametric estimation, regularization, or non-parametric methods with cross-

fitting and cross-validation. In the second stage, the semiparametric moment functions are esti-

mated and sorted. When using regularized first-stage estimators, orthogonalization of the moment

conditions is necessary.

4.3.1 First Stage

We focus on post-lasso methods to explain the first stage, although any semiparametric or machine

learning estimation method can be employed. The first step is to estimate the probability of being

selected into the sample s0(t, x) and the trimming threshold p0(x). We utilize ℓ1-penalized logistic

regression. The logistic function for selection is

s(t, x) = Λ
(
x′αs

)
+ rs(x) for t ∈ T ,

where Λ(·) is the logistic CDF, αs is the parameter vector, and rs(x) represents approximation

error. To estimate αs, we maximize the penalized log-likelihood function using the optimal penalty

parameter λs proposed by Belloni et al. (2017), Equation (6.5), or through cross-validation. The

selection probabilities are then ŝ(t, x) = Λ (x′α̂s) for t ∈ T , and the trimming threshold is p̂(x) =

ŝ(t′, x)/ŝ(t, x). If p̂i(x) < 1, individual i belongs to the group X+ because they are induced to be

selected when exposed to the treatment. Conversely, if p̂i(x) > 1, the individual is discouraged

from participating when exposed to the treatment and belongs to group X−. Flexible machine

learning methods, such as tree-based methods, can also be used to obtain high-quality estimates of

the nuisance functions.

The u-th conditional quantile can be approximated as

q(u, t, x) = x′αq(u) + rq(u, x) for t ∈ T ,

where αq(u) is the parameter vector for the u-th quantile, and rq(u, x) represents approximation

error. We minimize the penalized loss function with the penalty parameter λq according to Bel-

loni and Chernozhukov (2013) or through cross-validation. The u-th quantile is then estimated as

q̂(u, x) = x′α̂q. Although we emphasize ℓ1-penalized logistic and quantile regression, any machine

learning method can be used. Alternative quantile prediction methods include random forest quan-

tile regressions and gradient boosting quantile regressions. The theoretical results hold under the
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respective convergence rates.

Assumption 3.1 highlights an important aspect of this step. The correct specification of

spillovers in the selection mechanism ensures that individuals can be accurately classified into

the groups X+ and X−. Semenova (2023) discusses similar misclassification issues when predicting

s0(t, x) and s0(t
′, x). She suggests that a sufficient condition is to have the support of p0(x) bounded

away from both zero and one. Future research should consider the impact of misspecification of

the exposure mapping on the selection mechanism.

4.3.2 Second Stage

Neyman orthogonality and cross-fitting provide high-quality estimation and inference in settings

requiring regularized estimators. Semenova (2023) provides correction terms that prevent carrying

over first-stage regularization bias. The goal is to orthogonalize the moment conditions so that

first-stage estimation errors only have second-order effects, which do not affect the asymptotic

variance of the bounds.

To incorporate the distinction between the groups X+ and X−, we generalize the estimator

τ̂∆ = G
[
Z⊤WZ

]−1
Z⊤WỸ∆, where ∆ ∈ {L,U}. The row vector G ≡ [1 −1] contrasts exposures

t and t′. Z contains the treatment exposures 1i{t} and 1i{t′}, and the diagonal weighting matrix W

has elements wi =
1

πi(Ti)
. The outcome Ỹ∆ is transformed using correction terms to ensure Neyman

orthogonality of the estimation process. The correction terms, which are detailed in Appendix A,

ensure that first-stage regularization bias is not introduced into the asymptotic variance of the

bounds. The estimand is obtained by dividing τ̂∆ by s̄ = 1
n

∑
min{ŝi(t, x), ŝi(t′, x)}.

The second important ingredient is cross-fitting, which controls the potential bias from overfit-

ting when using modern machine learning methods. Cross-fitting is a method to prevent overfitting

in the first stage by splitting the sample into K folds. The first stage is estimated K times, each

time using K − 1 folds to estimate the nuisance function η̂(·) and the remaining fold to predict the

nuisance parameters ŝi(·) and q̂i(·). The second stage is estimated using the predicted values of

the nuisance parameters. A formal definition of K-fold cross-fitting is provided by Chernozhukov

et al. (2018).

4.4 Inference

We assume the outcomes exhibit approximate neighborhood interference (ANI) in order to deter-

mine the asymptotic properties of the bounds. Leung (2022) defines ANI as a restriction on the

effect of treatment from distant individuals j (in the network space) on the outcome of i. ANI

restricts this effect to be small, but potentially non-zero. Under this assumption, he shows that

we can apply asymptotic results provided by Kojevnikov et al. (2021) on ψ-dependence. Here, we

provide a general overview of the assumptions from Leung (2022), and also discussed by Gao and

Ding (2023), that are necessary to show consistency and asymptotic normality of the bounds τ̂L

and τ̂U .
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Let An denote the set of all possible networks with n units and Nn = {1, . . . , n} denote the set

of units. Define a K-neighborhood as N (i,K;A) = {j ∈ Nn : ℓA(i, j) ≤ K}, where ℓA(i, j) is the

length of the shortest path between i and j. When K = 2 and A describes friendships, N (i, 2;A)

includes all friends and friends-of-friends of i. Denote subvectors of d and subnetworks of A be-

longing to N (i,K;A) as dN (i,K;A) = (dj : j ∈ N (i,K;A)) and AN (i,K;A) = (Akl : k, l ∈ N (i,K;A)).

Finally, let D′ be an independent copy of D, and D(i,s) =
(
DNA(i,s;A), D

′
−NA(i,s;A)

)
fixes the real-

ized treatment for units in N (i,K;A) but allows the treatment for units outside N (i,K;A) to be

different from D.

Assumption 4.1 (Regularity Conditions). (KNE) K-Neighborhood Exposure: There exists a K ∈
N such that, for any n ∈ N and i ∈ Nn, if N (i,K;A) = N (i,K;A′), AN (i,K;A) = A′

N (i,K;A′), and

dN (i,K;A) = d′N (i,K;A′), then T (i, d, A) = T (i, d′, A′) for all d, d′ ∈ {0, 1}n and A,A′ ∈ An. (OV)

Overlap: πi(t) is uniformly bounded away from 0 and 1. (BO) Bounded Outcomes: |Yi(d)| < Ȳ <

∞.

Assumption 4.1 outline standard regularity conditions. The first part (KNE) restricts the

exposure mapping T (·) only to K-Neighborhoods. This is common on applied work where the

research is interested on the network effects of units that are connected up to K-steps apart.

Assumption (OV) restricts the proportion of always-observed p0, in addition to restrictions on the

sequence of networks. Since the propensity score is calculated using the structure of the network,

there are types of networks in An that are limited. A network that is very dense induces everyone

to be exposed to the treatment which changes the composition of always-observed and compliers

in the sample. Third, we assume in (BO) that potential outcomes are bounded.

Assumption 4.2 (Weak Network Dependence). (ANI) Approximate Neighborhood Interference:

supn θn,s → 0 as s → ∞. (WD) Weak Dependence for CLT: There exist ϵ > 0 and a positive

sequence {mn}n∈N such that as n→ ∞, mn → ∞ and

Σ−2 n−2
n∑

s=0

|Hn (s,mn)| θ̃1−ϵ
n,s → 0,

Σ−3/2 n−1/2 Mn (mn, 2) → 0,

Σ−1/2 n3/2 θ̃1−ϵ
n,mn

→ 0.

Assumption 4.2 is critical to restrict network interference. Approximate Neighborhood Inter-

ference (ANI) restricts the level of interference from distant individuals, where interference from

individuals at distance s is defined as θn,s ≡ maxiE
[∣∣Yi(D)− Yi

(
D(i,s)

)∣∣]. Leung (2022) shows

that the linear-in-means model and the complex contagion model features ANI. Under assumptions

3.1 - 3.2 and 4.1 - 4.2 (ANI), we can show the data is ψ-dependent. This is straightforward from

Leung’s (2022) weak dependence theorem 1.

The second part of assumption 4.2 (WD) limits the dependence across individuals by imposing

that θ̃n,s = θn,⌊s/2⌋1{s > 2max{K, 1}} + 1{s ≤ 2max{K, 1}} decays fast enough counterbalanc-

ing the growth of the s-neighborhoods. M∂
n (s) = n−1

∑n
i=1

∣∣N ∂
A(i, s)

∣∣ is the average size of the set
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of units exactly distance s from i which isN ∂
A(i, s). Define the asymptotic variance of the Hajek esti-

mator with known trimming proportion and quantile as Σ = Var
(
n−1/2

∑n
i=1

1i(t)
πi(t)

(Yi − µ∗(t)) : t ∈ T
)
.

Let Mn(s, k) = n−1
∑n

i=1 |N (i, s;A)|k, the kth moment of the s−neighborhood size within network

A. Hn(s,m) denotes the set of paired couples (i, k) and (j, l) such that the units within each couple

are at most path distance m apart from each other, and the two pairs are exactly path distance s

apart. The three conditions on assumption (WD) restrict the type of networks and the extent of

interference among individuals.

Fisher’s (1935) use of additive regressions and Lin’s (2013) fully-interacted regressions motivate

covariate adjustment under complete randomization. The assumptions and results presented here

do not explicitly account for covariate adjustment but can be extended using Gao and Ding’s (2023)

results. The next theorem shows that the bounds are asymptotically normal and the asymptotic

variance accounts for the estimation of the trimming proportion and quantile.

Theorem 1 (Asymptotic Normality). Under assumptions 3.1 - 3.2 and 4.1 - 4.2, we have

√
n
(
τ̂L − τL0

) d→ N (0,VL)
√
n
(
τ̂U − τU0

) d→ N (0,VU )

Appendix A contains the proof of Theorem 1 and the explicit expression for the variance-

covariance matrices VL and VU . It uses the WLS representation of the estimator to create similar

moment conditions to Lee (2009) and obtain asymptotic normality for GMM estimators with non-

smooth moment functions. The variance of the bounds is decomposed in three terms: the variance

when quantile threshold qp0 and trimming proportion p0 are known, the variance of the quantile

qp0 , and the variance of the trimming proportion p0.

For estimation, we use the network HAC variance estimator with adjusted kernel by Gao and

Ding (2023). The different components of the estimator are

V̂β
∆ =

(
Z⊤
∆WZ∆

)−1 (
Z⊤
∆WE∆K

+E∆WZ∆

)(
Z⊤
∆WZ∆

)−1
,

V̂ q
∆ =

(
q̂∗ − β̂∆

)2∑
Siwi(t)

(
1− p̂

p̂

)
,

V̂ p
∆ =

(
q̂∗ − β̂∆

)2( p̂− α̂

α̂
∑
wi(t)

+
1− α̂

α̂
∑
wi(t′)

)
,

(3)

where ∆ ∈ {L,U} for the lower and upper bound, E∆ is a diagonal matrix with residuals from

the WLS estimation, and K+ is an adjusted kernel matrix. For the second component, q̂∗ is the

estimated quantile with ∗ ∈ {p̂, 1− p̂} for the lower and upper bound, and β̂∆ is the WLS coefficient

for the group that was trimmed. The last component V̂ p
∆ features α̂ =

∑
wi(t

′)·Si∑
wi(t′)

.

Gao and Ding (2023) define the elements of the kernel matrix K as Kij = 1 (ℓA(i, j) ≤ b)

so that the kernel places nonzero weight between units i and j when they are at most b steps

apart in the network space. The adjustment they propose to the kernel matrix guarantees that
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the variance covariance matrix V̂β
∆ is positive definite and asymptotically conservative. Using the

eigendecomposition of K, the adjusted kernel matrix K+ is defined as K+ = Qmax{Λ, 0}Q⊤,

where Λ is a diagonal matrix with eigenvalues, Q is the matrix of eigenvectors, and the maximum

is taken element-wise. Finally, we use adjusted confidence intervals proposed by Imbens and Manski

(2004) to capture uncertainty on the spillover effect and not the region of all rationalizable spillover

effects.

When we are using smooth or sparse designs of the covariate distribution, we need to extend

the regularity conditions of Assumption 4.1. In addition to these regularity conditions, we need

to introduce selection and quantile rates to ensure that the first stage nuisance parameters are

estimated at a sufficiently fast rate. The new regularity assumptions and the first stage rates follow

the work of Semenova (2023) and Heiler (2023).

Assumption 4.3 (Regularity Conditions with Covariates). (KNE) K-Neighborhood Exposure:

There exists a K ∈ N such that, for any n ∈ N and i ∈ Nn, if N (i,K;A) = N (i,K;A′),

AN (i,K;A) = A′
N (i,K;A′), and dN (i,K;A) = d′N (i,K;A′), then T (i, d, A) = T (i, d′, A′) for all d, d′ ∈

{0, 1}n and A,A′ ∈ An. (MOV) Multiple Overlap: πi(t) and s(t, x) are uniformly bounded away

from 0 and 1. (RO) Regular Outcomes: the conditional density f(y | S = 1, T = t,X = x) is con-

tinuously differentiable, and with its derivative they are uniformly bounded from above and away

from zero. (SEP) Separability: There is a constant ε > 0 and a set X̄ ⊂ X with P (X\X̄ ) = 0 such

that infx∈X̄ |s0(t′, x)− s0(t, x)| > ε

Assumption 4.3 keeps (KNE) from Assumption 4.1, but extends the conditions on overlap

and regular outcomes. Specifically, it requires to have multiple overlap (MOV) not only on the

propensity score, but also on the conditional probability of selection. It also strenghts the regularity

condition on the outcomes (RO) expecting that they are continuously distributed without point

masses. In addition, it imposes separability (SEP) on the conditional probabilities s0(t
′, x) and

s0(t, x). Thus, we can correctly predict if individuals belong to the group that is encouraged by

the treatment exposure, X+, or discouraged by it, X−.

Define the Lp selection rate spn = supt∈T sups∈St
n
[E (s(t,X)− s0(t,X))p]1/p, the worst case

selection rate s∞n = supt∈T supx∈X sups∈St
n
|s(t, x)− s0(t, x)|, and the Lp quantile rate qn =

supt∈T supq∈Qt
n
supu∈U [E (q(u, t,X)− q0(u, t,X))p]1/p, where

{
St
n

}
n≥1

is a sequence of sets, such

that the first-stage estimates ŝ(t, x) of the true function s0(d, x) belong to St
n with probability at

least 1− o(1). Similarly, let
{
Qt

n

}
n≥1

be a sequence of sets with the same property for quantiles.

Assumption 4.4 (First Stage Rates). The selection and quantile rates obey the following bounds

s2n + q2n = o
(
n−1/4

)
, s1n = o(1), q1n = o(1), s∞n = o(1).

Using the Horvitz-Thompson estimand and orthogonalized moment conditions, Semenova (2023)

shows that the first stage estimation error is negligible. The difference is that the moment con-

ditions are not independent and identically distributed, but ψ-dependent. Theorem 2 shows the
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asymptotic normality of the estimator using the previous assumptions, while we leave the details

of the explicit form of the variance covariance matrix to Appendix A.

Theorem 2 (Asymptotic Normality with Nuisance Parameters). Under assumptions 3.1 - 3.2 and

4.2 - 4.4, we have

√
n

( τ̂L

s̄ − τL0
τ̂U

s̄ − τU0

)
d→ N (0,V)

5 Monte Carlo Simulations

To evaluate the performance of the spillover bounds, a Monte Carlo simulation study is conducted.

The aim is to assess the finite sample properties of these bounds under various scenarios, with

parameters calibrated according to the empirical application. Data is generated from a finite

population model incorporating network interference, with 10,000 simulation draws. The Monte

Carlo experiments include designs with correctly specified and misspecified selection models. In

both designs, spillover effects are evaluated using the full population and the spillover bounds with

the selected sample.

In alignment with the empirical application detailed in Section 6, three population samples are

considered: n = 829 for the three largest treated schools, n = 1811 for the top eight, and n = 2814

encompassing all 14 intervention schools. In these samples, each individual is, on average, connected

to 2.5 friends. The network is constructed using a random geometric graph model, which assigns

positions ρi ∼ Uniform([0, 1]2) and an average degree d̄ = 2.5. Here, two individuals are connected

if their Euclidean distance is less than
√
d̄/(πn). The adjacency matrix A is derived from this

network structure.

The outcome and selection processes are generated in accordance with the sample selection

model that incorporates social interactions, as introduced in Subsection 2.2. Two designs are

proposed to demonstrate the performance of the bounds under both correct specification and mis-

specification of the sample selection mechanism. The first design contemplates a selection model

that accurately reflects the exposure mapping at which the spillovers are evaluated. Conversely, the

second design considers a selection equation that specifies the spillovers differently from the chosen

exposure mapping, albeit satisfying approximate neighborhood interference. In both designs, the

scenario where the true spillover parameter τ0 = 0 is examined, and the bounds are compared with

the scenario where it is incorrectly assumed that outcomes are missing at random.

The outcome and selection equations for the first design are generated from the following model5:

Y ∗
i = α1 + β1

∑n
j=1AijY

∗
j∑n

j=1Aij
+ γ1Di + Ui,

S∗
i = α2 + δ2Ti + Vi,

Yi = 1{S∗
i > 0} · Y ∗

i ,

5In practice, we solve for the reduced form of the outcome model to obtain Y ∗
i .
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where Ui = 0.5U∗
i +0.5(ρi1−0.5) and Vi = 0.5V ∗

i +0.5(ρi1−0.5). Both error terms, Ui and Vi, account

for unobserved homophily due to the first component of individual i’s location ρi, while the first

component is generated by a multivariate normal distribution with mean zero, σU = 0.25, σV = 0.5,

and σUV = 0.1256. The treatment assignment Di is generated from a Bernoulli distribution with

probability 0.25, aligning with the average propensity score of the empirical application. The

exposure mapping Ti is defined as Ti = 1
∑
AijDj > 0. The propensity score πi(t

′) is generated

from the Binomial distribution of having no friends treated.

For the second design, the model is the same as the first design, but the selection equation is

misspecified. It is defined as:

Y ∗
i = α1 + β1

∑n
j=1AijY

∗
j∑n

j=1Aij
+ γ1Di + Ui,

S∗
i = α2 + β2

∑n
j=1AijS

∗
j∑n

j=1Aij
+ δ2

∑n
j=1AijDj∑n
j=1Aij

+ γ2Di + Vi,

Yi = 1{S∗
i > 0} · Y ∗

i .

The parameters from the outcome and selection equations are set so that p0, the proportion

of excess individuals that are always observed, is close to one. Under this condition, sample

selection is expected to be less of an issue and the bounds should be narrower. For the outcome

equation the vector parameter is (α1, β1, γ1) = (0, 0.8, 0), which denotes strong network dependence

on potential outcomes due to the large β1 coefficient and no direct and spillover effect. The

selection equation on the first design has parameters (α2, δ2) = (0.4, 0.2), while the second design

has (α2, β2, γ2) = (0.1, 0.8, 0.2, 0.2). These Monte Carlo experiments correspond to a case where

the intervention has significant direct and spillover effects at the extensive margin, but no effects

at the intensive margin.

Table 1 presents the average spillover effect τ̂(1, 0), the oracle and empirical coverage, and the

fraction p̂ of units that are always-observed for each sample size. The average spillover effect is the

mean estimated spillover across the 10,000 simulation draws. The oracle coverage is the proportion

of times the true parameter is included in the confidence interval using the standard deviation of the

estimated spillover over the simulation draws. Two empirical coverages are calculated. The network

coverage uses the network HAC variance estimator while the naive coverage assumes there is no

network dependence and uses heteroskedastic-robust standard errors. The results are presented for

both designs under correct and misspecified selection models. When there is no sample selection,

which means that we have access to the full sample, using the WLS estimator by Gao and Ding

(2023) gives a null spillover effect on average. Across all sample sizes, oracle and network coverage

are close to 95 percent, which is the nominal level. This is true for both designs given that sample

selection is not an issue.

When using the selected sample and incorrectly assuming that outcomes are missing at random,

6Heckman and Vytlacil (2005) and Heiler (2023) discuss designs of a Generalized Roy model that shares a similar
error structure.
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Table 1. Simulation Results

Design 1 Design 2
Correct Specification Misspecification

Full Selected Bounds Full Selected Bounds

n = 829
τ̂(1, 0) 0.00 -0.06 [-0.18, 0.04] 0.00 -0.19 [-0.42, 0.03]

Oracle Coverage 0.950 0.888 0.979 0.952 0.399 0.975
Network Coverage 0.954 0.895 0.970 0.950 0.435 0.949
Naive Coverage 0.803 0.717 0.922 0.788 0.207 0.903

p̂ 0.93 0.83

n = 1811
τ̂(1, 0) 0.00 -0.07 [-0.16, 0.03] 0.00 -0.19 [-0.43, 0.02]

Oracle Coverage 0.950 0.801 0.983 0.949 0.055 0.975
Network Coverage 0.953 0.811 0.976 0.956 0.073 0.958
Naive Coverage 0.796 0.579 0.924 0.809 0.019 0.922

p̂ 0.94 0.83

n = 2814
τ̂(1, 0) 0.00 -0.07 [-0.17, 0.03] 0.00 -0.16 [-0.35, 0.03]

Oracle Coverage 0.949 0.690 0.984 0.953 0.064 0.983
Network Coverage 0.954 0.713 0.979 0.956 0.079 0.965
Naive Coverage 0.791 0.435 0.936 0.782 0.016 0.926

p̂ 0.93 0.85

Note: Monte Carlo simulation results for the spillover bounds. The table shows the average spillover

effect τ̂(1, 0), the coverage of the oracle and weighted least squares (WLS) confidence intervals with

network HAC and naive standard errors, and the fraction p̂ of units that are always-observed for

different sample sizes. The results are presented for designs with correctly specified and misspec-

ified selection equations. The column “Full” refers to the spillover effect using the full sample,

“Selected” to the selected sample when incorrectly assuming that outcomes are missing at ran-

dom, and “Bounds” to the spillover bounds that account for sample selection in the outcome. The

naive coverage utilizes heteroskedastic-robust standard errors assuming i.i.d data, while network the

network coverage uses network HAC standard errors with adjusted kernel and optimal bandwidth

b = 3, and Imbens and Manski’s (2004) confidence interval with c̄ = 1.645.
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the spillover effect is biased. This is because we lose point-identification since both treatment

status and social exposure affect sample selection on the outcome. For the design with correct

specification, the estimated spillover effect is about -0.06 with oracle coverages from 70 to 89

percent. Even though the simulations feature high shares of always-observed units (close to 0.95),

the oracle coverage never reaches more than 90 percent. As expected, network coverage mimics

the oracle coverage, while the naive coverage is lower when assuming outcomes missing at random

with sample selection. When using the spillover bounds, the estimates are [−0.18, 0.04] for the

smallest sample size and [−0.17, 0.03] for the largest one. The empirical coverage is close to the

oracle coverage, improving with the sample size. It is important to notice that using naive standard

errors can lead to anti-conservative estimates, as the empirical coverage is always lower than the

oracle coverage, even when the sample selection is correctly specified.

With misspecification, the spillover effect is estimated at about -0.19, with oracle coverage

ranging from 5 to 7 percent if we incorrectly assume missing outcomes at random. The network

coverage is slightly higher, but the naive coverage is substantially lower. This indicates that the

interplay between the misspecification of the sample selection mechanism and reduced proportions

of always-observed units can result in significantly biased estimates. The spillover bounds, on

the other hand, successfully recover the true spillover effect. The bounds are [−0.42, 0.03] for the

smallest sample size and [−0.35, 0.03] for the largest. The coverage in this design is slightly lower

than in the properly specified model, and the empirical coverage is smaller than the oracle coverage.

This indicates that the bounds can recover the true spillover effect even when the selection model

is misspecified, though coverage may be mildly anti-conservative due to the misspecification.

6 Field Experiment on Computer Use

To illustrate an application of the spillover bounds, we utilize data from a field experiment that

randomized the provision of laptops to students in public schools in Peru. Beuermann et al. (2015)

studied the short-term impacts of the “One Laptop per Child” program, which aims to promote

self-empowered learning by providing personal laptops to children in developing countries. The

authors implemented a randomized controlled trial, with randomization occurring at both the

school and individual levels. Fourteen schools were randomly selected for treatment, and within

each school, four students per classroom were chosen via a public lottery to receive a laptop. Due to

the high compliance rate, the analysis focused on comparing lottery winners to nonwinners within

the treatment schools.

Beuermann et al. (2015) found that the program successfully increased exposure to computers

at home. On the extensive margin, the program increased the likelihood of using a computer

at home by 33 percentage points, and on the intensive margin, it increased computer usage by

approximately 18 minutes per day. The authors also investigated potential spillover effects among

students using data on their close friends but found no evidence of such effects on computer usage.

This section revisits the analysis of spillover effects of winning the laptop lottery, focusing on the

intensive margin.
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The estimand of interest is the average spillover effect for students who always use computers

regardless of treatment exposure. This selected group of computer users is defined as students

with positive minutes of usage during the previous day. The outcome of interest Yi is the number

of minutes of computer utilization the day before. The sample selection indicator Si is defined

as 1 if student i used a computer yesterday and 0 otherwise. We want to assess, the intensive

margin, whether the intervention increased time spent on computers for students that would have

used computers anyway. At the intensive margin, spillover and direct effects are only partially

identified because the randomized experiment only guarantees that treated and control students

are comparable at the baseline.

The primary estimand is the average spillover effect for students who always use computers re-

gardless of treatment exposure. This group is defined as students with positive minutes of computer

usage on the previous day. The outcome of interest, Yi , is the number of minutes of computer

usage the previous day. The sample selection indicator, Si , is 1 if the student used a computer yes-

terday and 0 otherwise. We aim to assess whether the intervention increased computer usage time

for students who would have used computers anyway. At the intensive margin, both spillover and

direct effects are only partially identified because the randomized experiment ensures comparability

of treated and control students only at baseline.

Students were asked to nominate up to four friends in their school. The intervention was

randomly assigned to 28 schools, so the analysis focuses on these treatment schools to ensure

students had a non-zero probability of being treated. The element Aij ∈ {1, 0} of the adjacency

matrix A indicates whether student i nominated student j as a friend. Figure 1 displays the

friendship networks across the 14 schools that were treated. The treatment indicator Di is 1 if

student i was assigned to the intervention and 0 otherwise. Thus, the exposure mapping Ti =

1{
∑
AijDj > 0} defines spillovers as having at least one treated friend. The propensity score πi(t)

is calculated using the hypergeometric distribution under the block randomization scheme. For

direct treatment, the propensity score equals 4/nc, where nc is the number of students in the

classroom. For spillovers, the propensity score is calculated based on the randomization protocol

and network structure.

Table 2 provides summary statistics for groups defined by the exposure mapping Ti = (Di,

1{
∑
AijDj > 0}). The first element of Ti indicates direct treatment status, and the second

indicates whether at least one friend was treated. About 45 percent of the winner and nonwinner

students had at least one friend who won the laptop lottery. The total sample consists of 3,085

students, with 75 percent using a computer the previous day.

Without sample selection, the average number of minutes of computer use is about 120 minutes.

The selection rate represents the proportion of students using a computer, i.e., Pr(Si = 1). Selection

rates vary by direct treatment exposure but are similar across social exposure. The last column

shows the mean log of computer utilization, conditional on using a computer (Yi > 0). Computer

use is highest for students who are lottery winners and have at least one winner friend. Conversely,

among students with no winner friends, lottery winners have the lowest computer use. In the
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Figure 1. Friendship Networks across Schools

School 1 School 2 School 3

School 4 School 5 School 6

School 7 School 8 School 9

School 10 School 11 School 12

School 13 School 14

Note: This figure displays the friendship networks across the 14 schools that were treated. The nodes

represent students, and the edges indicate friendship connections.
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Table 2. Computer Utilization: Summary Statistics

Exposure Observations Mean Use Selection Rate Mean (log)

(0,0) 1399 119 0.726 4.80
(0,1) 1019 115 0.727 4.78
(1,0) 390 125 0.797 4.74
(1,1) 277 129 0.827 4.81

Overall 3085 119 0.745 4.78

Note: Summary statistics by groups defined by the exposure mapping Ti =

(Di,1{
∑

AijDj > 0}). The first element of the exposure mapping Ti refers to

the direct treatment status, and the second indicates whether at least one friend

received treatment. Mean computer use is the average number of minutes of

computer utilization the day before, including zeros. The selection rate is the

proportion of students that used a computer. The last column presents the mean

of the log of computer utilization, conditional on using a computer (Yi > 0).

following analysis, I will use spillover bounds to assess the presence of network interference on the

intensive margin of computer utilization.

6.1 Spillover Bounds without Covariates

Under the current exposure mapping, the sample can be divided into four groups to estimate direct

and spillover effects by comparing direct and social exposure differences. Direct effects are assessed

by contrasting students who won the lottery with those who did not, considering whether they have

at least one friend who won (winner friend) or none (nonwinner friend). Similarly, spillover effects

are evaluated by comparing winner and nonwinner students. Table 3 presents the direct, spillover,

and overall effects of the intervention on computer use, with bounds calculated using the trimming

procedure described in section 4.

The key assumption in partially identifying the effects of the intervention is that winning or

having a friend win the lottery increases students’ likelihood of computer use. Under this assump-

tion, 1− p̂ is calculated to identify the excess proportion of students induced to use computers due

to treatment. Direct treatment effects are estimated after trimming the lowest and highest outcome

values of 10 to 12 percent of the sample. With similar selection rates for spillovers, trimming is

substantially smaller (1 to 3 percent). However, 8 percent of the sample is trimmed for overall

effects.

Approximate neighborhood interference assumes that interference weakens with distance in the

friendship network. The network comprises 20 components, with the largest having 100 students.

Across all components, the average student distance is 2.5, and the longest path is 6. The network

is sparse, with a density of 0.03, and has a low clustering coefficient of 0.1. This is consistent

aligned with the assumption of approximate neighborhood interference.

Table 3 showcases the spillover bounds for computer utilization, offering insights into the direct
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Table 3. Spillover Bounds on Computer Use

Direct Effect Spillover Effect Overall Effect
Sample Winner Friend Nonwinner Friend Winners Nonwinners Full

(1) (2) (3) (4) (5)

Estimate
τ̂ 0.03 -0.04 0.11 0.00 0.00
CI (-0.12, 0.17) (-0.17, 0.09) (-0.06, 0.27) (-0.10, 0.09) (-0.08, 0.08)

Bounds
τ̂ [-0.13, 0.22] [-0.22, 0.13] [0.07, 0.15] [-0.02, 0.02] [-0.09, 0.08]
CI (-0.25, 0.33) (-0.34, 0.25) (-0.09, 0.32) (-0.13, 0.11) (-0.17, 0.17)
p̂ 0.87 0.90 0.97 0.99 0.95

Note: This table presents direct and spillover effects under the exposure mapping Ti = (Di,1{
∑

AijDj > 0}).
First element of the exposure mapping Ti refers to the direct treatment status and the second whether at least

one friend received treatment. Columns (1) and (2) display direct effects of winning the lottery for students

with at least one treated friend and with none, respectively. Columns (3) and (4) show spillover effects of having

a treated friend for students that won the lottery and did not, respectively. Last column displays overall effects

comparing any exposure to the intervention to none. Spillover estimates assume that outcomes are missing at

random. Instead, spillover bounds are shown in brackets. Imbens and Manski’s (2004) confidence interval with

c̄ = 1.645 are shown in parentheses below the bounds. For the confidence intervals, we use standard errors with

network HAC variance (optimal bandwidth b = 2). The fraction p̂ is the proportion of students who select into

the sample.

and spillover effects of winning the lottery. Interestingly, the bounds for the direct effect of winning

the lottery are quite broad and encompass zero. For students with a friend who won the lottery,

the bounds range from a potential 13 percent decrease to a 22 percent increase in computer use,

illustrating considerable variability. Similarly, for students without friends who won the lottery,

the spillover bounds are wide, indicating a possible 22 percent decrease or a 13 percent increase

in computer use due to winning the lottery. These findings echo in the overall effect estimates,

where the bounds suggest a potential 9 percent decrease to an 8 percent increase in computer use

attributed to the intervention.

Analyzing spillover effects reveals interesting dynamics. When assuming outcomes are missing

at random, all the point-identified estimates are not statistically significant. In general, among stu-

dents who won the lottery, having a friend who also won appears to positively influence computer

use, with bounds indicating an increase of 7 to 15 percent. However, the confidence interval do

not rule out a zero effect. Conversely, for nonwinner students, the bounds are notably tighter due

to minimal trimming and encompass zero, indicating no apparent evidence of spillovers. These re-

sults are derived using confidence intervals with standard errors accounting for network interference

and include the variance from the trimming procedure. While these findings contribute valuable

insights, there remains scope for refinement and deeper exploration using information from covari-

ates. Incorporating relevant covariates into the analysis holds promise for enhancing the precision

of estimates, particularly in addressing variation inherent in the sample selection process.
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6.2 Including Covariates on the Selection Process

Integrating covariates into the selection process offers a potential avenue to refine the spillover

bounds by accounting for relevant observed characteristics. The covariates include demographics,

family attributes, home environment, and past computer engagement. Additionally, we consider

the average characteristics of friends, such as the proportion of friends with past computer use. This

broader set of covariates enables a more nuanced understanding of the selection process. To model

the selection probability, we employ parametric logistic regressions, ℓ1-penalized logistic regressions,

and automatic search and aggregation machine learning techniques, such as Auto ML. Similarly,

we leverage parametric quantile regressions, ℓ1-penalized quantile regressions, and non-parametric

gradient boosting quantile regressions to estimate conditional quantiles.

In the parametric approach, our model formulation involves ŝ(t, x) = Λ (x′α̂s), where Λ(r) =
exp(r)

1+exp(r) denotes the logistic function, α̂s represents the regularized coefficient vector, and x en-

compasses baseline covariates. Subsequently, the probability of being always-observed, p̂(x), is

derived as ŝ(t′,x)
ŝ(t,x) . Post-lasso logistic regression ensures the treatment exposures {t, t′} to al-

ways be included. The estimation of u conditional quantiles (q̂(u, x)) is performed over quantiles

u ∈ {0.01, 0.02, . . . , 0.99}.
We extend our analysis with non-parametric methods, leveraging automated machine learning

algorithms for selection prediction and gradient boosting quantile regression for estimating con-

ditional quantiles. The selection process involves an exhaustive search among various algorithms,

including logistic regression and tree-based methods, facilitated by the FLAML library in Python.

Following the selection process, we employ gradient boosting quantile regression for non-parametric

estimation of conditional quantiles.

In the first stage, 17 covariates7 are incorporated to explain both the outcome and selection

processes, detailed in Table B1. These covariates are further enriched by their interaction with

the row-normalized adjacency matrix A, capturing the average attributes of friends. We add the

network degreee of each student, which is the total number of friends, to the individual and friends

attributes for a total of 35 covariates. These covariates are standardized to have zero mean and

unit variance, except for the binary variables. The outcome variable of interest is the logarithm of

the number of minutes of computer utilization from the previous day. Our aim is to estimate the

direct, spillover, and overall effects of the intervention on computer use.

To estimate the spillover bounds, we implement cross-fitting and hyper-parameter tuning strate-

gies. The sample is divided into 10 folds, with each iteration involving fitting of selection and out-

come models on 9 folds, and prediction of p̂(x) and q̂(u, x) on the remaining fold. Hyper-parameter

tuning is conducted via 10-fold cross-validation for each sample split. In the subsequent stage,

bounds are computed using orthogonalized moment conditions, with individual outcomes trimmed

based on thresholds derived from q̂(p̂, x). Confidence intervals are computed using the network

HAC variance estimator with bandwidth b = 2.

The spillover bounds for computer utilization employing different first stage estimation strate-

7These covariates are part of Beuermann et al.’s (2015) specifications.
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Figure 2. Spillover Bounds on Computer Use with Covariates
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Note: This table presents direct and spillover effects under the exposure mapping Ti =

(Di,1{
∑

AijDj > 0}). First element of the exposure mapping Ti refers to the direct treatment

status and the second whether at least one friend received treatment. The first and second labels

represent direct effects of winning the lottery for students with at least one treated friend and with

none, respectively. The third and fourth labels show spillover effects of having a treated friend for

students that won the lottery and did not, respectively. Last column displays overall effects com-

paring any exposure to the intervention to none. Spillover bounds are shown using boxplots. The

bounds incorporate logistic and quantile regression under the parametric first stage estimation with

navy blue color. It also uses post-lasso logistic and quantile regression on the first stage denoted

by light blue color. The first stage estimation with automatic search of machine learning classifiers

and gradient boosting quantile regression is denoted by gold color. Imbens and Manski’s (2004)

confidence interval with c̄ = 1.645 are shown in parentheses below the bounds. For the confidence

intervals, we use standard errors with network HAC variance (bandwidth b = 2).
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gies are displayed in Figure 2. In general, these bounds are more narrow compared to those without

covariates. For students having at least one winner friend, the direct effect of winning the lottery

is positive, while for those with nonwinner friends, it is negative but uninformative when using

automated machine learning algorithms. The respective bounds are [0.19, 0.24] and [-0.32, -0.05]

when using post-lasso methods on the first stage. The direct effect being positive for students

with treated friends could be because having friends who also won the lottery creates a positive

peer influence environment that encourages and motivates increased computer utilization. When

friends have access to the same resources (in this case, the lottery winnings), they can engage in

activities together, support each other, and reinforce behaviors like technology usage. However,

students with no treated friends might lack that same peer environment which leads to a negative

direct effect for students without treated friends. The post-lasso and machine learning methods

yield similar results for the sample with winner friends, with direct effects ranging from 0.13 to

0.21 and 0.08 to 0.34, respectively.

Regarding the spillover effect of having a treated friend, it exhibits a positive impact for lottery

winners, suggesting that their peers’ lottery winnings influence their computer utilization positively.

The bounds for this effect are [0.24, 0.33] with post-lasso methods. Similar results are obtained

using a parametric specification and machine learning methods, with spillover effects ranging from

0.51 to 0.57 and 0.18 to 0.32, respectively. Surprisingly, for non-winners, the evidence also shows a

positive spillover effect, with bounds of [0.03, 0.35] only for the post-lasso method. This suggests

that the intervention has broader impacts on computer utilization amplified through friendships.

Notably, incorporating a rich set of covariates refines our understanding of these dynamics. We

find that only 30 percent of individuals are incentivized to increase computer usage due to having

a friend who won the lottery, conditional on their own lottery win.

The overall intervention effect ranges from -12 to 6 percent across all methods. Evidence of

overall effects remains inconclusive since we cannot entirely dismiss the possibility of null effects.

However, the inclusion of relevant observed characteristics refines our understanding of the inter-

vention’s impact on computer utilization. The regularization procedure selects 20 to 30 variables

across each sample split, with accuracies averaging around 80 percent. Among the selected covari-

ates are past computer usage, whether the father works from home, and friend characteristics such

as the average number of siblings and their past computer usage. These covariates are relevant for

the selection process, contributing to the tightening of the bounds. Most of the classifiers selected

were tree-based methods such as Extreme Gradient Boosting (XGBoost), Light Gradient-Boosting

Machine (LGBM), and random forest. Similarly to post-lasso, accuracy levels oscillate around 80

percent.

7 Conclusion

In conclusion, this paper introduces a novel method to estimate spillover effects in the presence of

nonrandom sample selection. The proposed spillover bounds extend the widely used Lee bounds to

general exposures to treatments and rely on an exposure monotonicity assumption. This assumption
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allows trimming the outcome distribution in a worst-case scenario to construct sharp bounds on the

spillover effects for the always-observed group. The framework also accommodates the inclusion

of covariates, which can help tighten the bounds by more flexibly modeling the selection process.

Monte Carlo simulations demonstrate that the estimator performs well in finite samples and is

robust to misspecification of the exposure mapping in the selection equation, as long as interference

is sufficiently weak.

The empirical application revisits a randomized laptop provision program to students and an-

alyzes spillover effects on computer utilization at the intensive margin. The estimated spillover

bounds provides evidence of positive direct and spillover effects using different subgroups for the

analysis. However, when analyzing the effects of the overall exposure to treatment, results suggest

uninformative bounds. Including covariates in the selection process does not substantially tighten

the bounds in that situation.

This paper makes several contributions. First and foremost, it proposes the first method to

partially identify spillover effects under nonrandom sample selection. Second, it provides an alter-

native design-based inference for the popular Lee bounds in the absence of interference. Third, it

extends Lee bounds to accommodate multiple treatments and arbitrary exposure mappings. As

spillovers and sample selection are common issues in empirical work, the proposed method provides

a useful tool for researchers to assess spillover effects in such settings. Future work could explore

misspecification of the exposure mapping in the selection equation and alternative approaches that

rely in exclusion restrictions.
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A Proofs and Estimation Details

Proof of Proposition 1. Under Assumptions 3.1 and 3.2, individuals exposed to t′ who are selected

into the sample are also selected when exposed to t. Therefore, the expected potential outcome

under exposure t′ reduces to

E
[
Ȳi(t

′) | S̄i(t) = 1, S̄i(t
′) = 1

]
= E

[
Ȳi(t

′) | S̄i(t′) = 1
]

= E
[
Yi | Si = 1, Ti = t′

]
,

and the proportion of always-takers that are exposed to t is

p0 = Pr
(
S̄i(t) = 1, S̄i(t

′) = 1 | S̄i(t) = 1
)

= Pr
(
S̄i(t

′) = 1 | S̄i(t) = 1
)

=
Pr
(
S̄i(t) = 1 | S̄i(t′) = 1

)
Pr
(
S̄i(t

′) = 1
)

Pr
(
S̄i(t) = 1

) (Bayes rule)

=
Pr
(
S̄i(t

′) = 1
)

Pr
(
S̄i(t) = 1

) (Monotonicity)

=
Pr (Si = 1 | Ti = t′)

Pr (Si = 1 | Ti = t)
(Independence).

Then, I show that µU ≡ E[Yi | Yi ≥ q1−p0 , Ti = t, Si = 1] is a sharp upper bound for E[Ȳi(t) |
S̄i(t) = 1, S̄i(t

′) = 1]. Following Lee’s proof of proposition 1, I define F (y) as the cumulative

distribution function (CDF) of Yi conditional on Ti = t and Si = 1. Under Assumption 3.2, I

can define a mixture of random variables so that F (y) = p0M(y) + (1 − p0)N(y) with mixing

proportion p0. M(y) represents the CDF of Ȳi(t) given Ti = t, S̄i(t) = 1, S̄i(t
′) = 1, and N(y) the

CDF of Ȳi(t) | Ti = t, S̄i(t) = 1, S̄i(t
′) = 0. Using Horowitz and Manski’ (1995) Corollary 4.1,

page 291, µU ≡ 1
p0

∫∞
y1−p0

ydF (y) ≥
∫∞
−∞ y dM(y) = E[Ȳi(t) | S̄i(t) = 1, S̄i(t

′) = 1] is a sharp upper

bound, and p0 is uniquely determined by the population. Lastly, following a similar argument as

Lee (2009), I can show that under these assumptions, any other bound contains [τL0 , τ
U
0 ]. ■

Equivalent Spillover Bounds Estimators. An equivalent estimator of the spillover bounds, for the

sample of individuals that are selected (Si = 1), using the Horvitz-Thompson formulation is

τ̂L =
1

n

n∑
i=1

[
1i{t}
πi(t)

· 1
{
Yi ≤ q̂p̂

}
· Si · Yi

]
− 1

n

n∑
i=1

[
1i {t′}
πi(t′)

· Si · Yi
]
,

τ̂U =
1

n

n∑
i=1

[
1i{t}
πi(t)

· 1
{
Yi ≥ q̂1−p̂

}
· Si · Yi

]
− 1

n

n∑
i=1

[
1i {t′}
πi(t′)

· Si · Yi
]
.
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While the Hajek representation for the spillover bounds in Section 4 is

τ̂L =

∑n
i=1

1i{t}
πi(t)

· 1
{
Yi ≤ q̂p̂

}
· Si · Yi∑n

i=1
1i{t}
πi(t)

· 1
{
Yi ≤ q̂p̂

}
· Si

−
∑n

i=1
1i{t′}
πi(t′)

· Si · Yi∑n
i=1

1i{t′}
πi(t′)

· Si
,

τ̂U =

∑n
i=1

1i{t}
πi(t)

· 1
{
Yi ≥ q̂1−p̂

}
· Si · Yi∑n

i=1
1i{t}
πi(t)

· 1
{
Yi ≥ q̂1−p̂

}
· Si

−
∑n

i=1
1i{t′}
πi(t′)

· Si · Yi∑n
i=1

1i{t′}
πi(t′)

· Si
.

For ease of notation, denote 1i{t}q ≡ 1i{t} · 1
{
Yi ≤ q̂p̂

}
. The previous estimator, τ̂L, can be

represented via WLS as

τ̂L =
[
1 −1

]
∑ 1i{t}p

πi(t)
SiYi∑ 1i{t}p

πi(t)
Si∑ 1i{t′}

πi(t
′) SiYi∑ 1i{t′}

πi(t
′) Si


=
[
1 −1

] [ 1/
∑ 1i{t}p

πi(t)
Si 0

0 1/
∑ 1i{t′}

πi(t′)
Si

][ ∑ 1i{t}p
πi(t)

SiYi∑ 1i{t′}
πi(t′)

SiYi

]

=
[
1 −1

] [ ∑wi1i{t}pSi 0

0
∑
wi1i{t′}Si

]−1 [ ∑
wi1i{t}pSiYi∑
wi1i{t′}SiYi

]

=
[
1 −1

] [ ∑
wi1i{t}2pS2

i

∑
wi1i{t}p1i{t′}S2

i∑
wi1i{t}p1i{t′}S2

i

∑
wi1i{t′}2S2

i

]−1 [ ∑
wi1i{t}pSi∑
wi1i{t′}Si

]
Y

=
[
1 −1

]([ 1{t}⊤p Si
1{t′}⊤Si

]
W
[
1{t}pSi 1{t′}Si

])−1 [
1{t}⊤p Si
1{t′}⊤Si

]
WY

=G
[
Z⊤
LWZL

]−1
Z⊤
LWY .

And the estimator τ̂U follows the same steps.

Proof of Theorem 1. It is sufficient to show that τ̂L is asymptotically normal. The moment condi-

tions are

g(θ) ≡


Z⊤
L,i (wiYi − wiZL,iβ)

[1{Yi > qp} − (1− p)]Siwi(t)(
Si − α

p

)
wi(t)

(Si − α)wi(t
′)


where θ⊤ = (β, y1−p, p, α)

⊤. Previously, I showed that β̂ is numerically equivalent to the Hajek-

based estimator. Therefore, I can write τ̂U = Gβ̂ as the difference in means. These moment

conditions mimic the ones in Lee’s (2009) proof of Proposition 2. The difference is on the first

moment where I include the WLS representation of the moment condition. By Proposition 3 of

Lee (2009), the estimator θ̂ is consistent and asymptotically normal using Theorem 7.2 of Newey
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and McFadden (1994). However, under Assumptions 4.1 - 4.2 (ANI), we can show that the data is

ψ-dependent. Therefore, it is necessary to change the CLT condition (iv) of Newey and McFadden’s

(1994) Theorem 7.2 by Theorem 3.2 of Kojevnikov et al. (2021). The latter holds due to Assumption

4.2 (See Gao and Ding, 2023). With ψ-dependent data, the asymptotic variance of the moment

conditions is V = D−1Σ(D−1)⊤, where D = E[ ∂
∂θ′ g(θ)] partitioned as

[
Dγ Dδ

0 Mδ

]
and Σ =

E[g(θ)g(θ)⊤] partitioned as

[
Σ1 0

0 Σ2

]
. The relevant part is the 3 × 3 upper left block of V,

which is D−1
γ Σ1(D

−1
γ )⊤ +D−1

γ DδM
−1
γ Σ2(M

−1
δ )⊤D⊤

δ (D
−1
γ )⊤. The different matrices involved are

Dγ = E[wi(t)Si]

 −p0 0 (qp0 − β1) f (qp0)

0 −1 0

0 0 −f (qp0)

 ,

Dδ = E[wi(t)Si]

 0 0

0 0

−1 0

 ,
Mδ =

[
−α0

p20
E[wi(t)] − 1

p0
E[wi(t)]

0 −E[wi(t
′)]

]
,

Σ1 =

[
Vβ 0

0 E [wi(t)Si] p0 (1− p0)

]
,

Σ2 =

[
α0
p0

(
1− α0

p0

)
E[wi(t)] 0

0 α0 (1− α0)E[wi(t
′)]

]
.

After some algebra, the variance covariance matrix for the lower bound of the spillover effects

results in

VL =

[
V β
11 + V q

L + V p
L V β

12

V β
21 V β

22

]
,

where V β
ij are the elements (i, j) of the asymptotic covariance matrix Vβ of the WLS estima-

tor of β, the variance from estimating the quantile is V q
L = 1

E[wi(t)Si]
1−p0
p0

(qp0 − β1)
2, and V p

L =

(qp0 − β1)
2
[

p0−α0

α0E[wi(t)]
+ 1−α0

α0E[wi(t′)]

]
. ■
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Correction Terms for Orthogonality. The correction terms to ensure Neyman orthogonality are

corL+(η) = q(p(x), x)

(
1i{t′}
πi(t′)

· (Si − s(t′, x))

− 1i{t}
πi(t)

· p(x) · (Si − s(t, x))

+
1i{t}
πi(t)

· Si · (1 {Yi ≤ q(p(x), x)} − p(x))

)
,

corL−(η) = −q(1− 1/p(x), x)

(
1i{t′}
πi(t′)

· 1

p(x)
· (Si − s(t′, x))

− 1i{t}
πi(t)

· (Si − s(t, x))

− 1i{t′}
πi(t′)

· Si ·
(
1 {Yi ≤ q(1− 1/p(x), x)} − 1 +

1

p(x)

))
,

corU+(η) = q(1− p(x), x)

(
1i{t′}
πi(t′)

· (Si − s(t′, x))

− 1i{t}
πi(t)

· p(x) · (Si − s(t, x))

+
1i{t}
πi(t)

· Si · (1 {Yi ≤ q(1− p(x), x)} − 1 + p(x))

)
,

corU−(η) = −q(1/p(x), x)
(
1i{t′}
πi(t′)

· 1

p(x)
· (Si − s(t′, x))

− 1i{t}
πi(t)

· (Si − s(t, x))

− 1i{t′}
πi(t′)

· Si ·
(
1 {Yi ≤ q(1/p(x), x)} − 1

p(x)

))
.

Then, the bias-corrected moment functions are gL = 1{p(x) ≤ 1} · gL+(η) + 1{p(x) > 1} · gL−(η)
and gU = 1{p(x) ≤ 1} · gU+(η) + 1{p(x) > 1} · gU−(η), where gL−(η) ≡ mL

−(η) + corL−(η), g
L
+(η) ≡

mL
+(η) + corL+(η), g

U
−(η) ≡ mU

−(η) + corU−(η), and gU+(η) ≡ mU
+(η) + corU+(η). For the estimation

process, we transform the outcome using the former corrections. The transformed outcome is

Ỹ L
+,i =

YiSi1{Yi ≥ qp̂}+ qp̂
[
Si
(
1{Yi ≤ qp̂} − p̂

)
− p̂ (Si − ŝi(t, x))

]
if Ti = t,

YiSi − qp̂ [Si − ŝi(t
′, x)] if Ti = t′,

Ỹ L
−,i =

YiSi + q1−1/p̂ [Si − ŝi(t, x)] if Ti = t,

YiSi1{Yi ≤ q1−1/p̂}+ q1−1/p̂

[
1
p̂ (Si − ŝi(t

′, x)) + Si

(
1{Yi ≤ q1−1/p̂} −

(
1− 1

p̂

))]
if Ti = t′,

Ỹ U
+,i =

YiSi1{Yi ≥ q̂1−p̂}+ q̂1−p̂

[
Si
(
1{Yi ≤ q̂1−p̂} − (1− p̂)

)
− p̂ (Si − ŝi(t, x))

]
if Ti = t,

YiSi − q̂1−p̂ [Si − ŝi(t
′, x)] if Ti = t′,

Ỹ U
−,i =

YiSi + q̂1/p̂ [Si − ŝi(t, x)] if Ti = t,

YiSi1{Yi ≤ q̂1/p̂}+ q̂1/p̂

[
1
p̂ (Si − ŝi(t

′, x)) + Si

(
1{Yi ≤ q̂1/p̂} − 1

p̂

)]
if Ti = t′.
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Proof of Theorem 2. Let gs = E [min (s (t′, X) , s(t,X))]. Under Assumption 4.3 and 4.4, gs, g
L,

and gU converge in probability and the first and second moments are bounded by Lemma A.7 and

A.2 in Semenova (2023). Using the Delta method for µ ≡
[
gL

gs
, gU

gs

]⊤
, then

√
n

( τ̂L

s̄ − τL0
τ̂U

s̄ − τU0

)
d→ N (0,V)

where τL0 = gL

gs
and τU0 = gU

gs
. The asymptotic variance is V = DΣD−1 and

D =

(
1 0 −gL/g2s
0 1 −gU/g2s

)
, Σ = (g − ḡ)K+(g − ḡ)⊤,

where g ≡
[
gL, gU , gs

]⊤
. ■
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B Appendix Tables and Figures

Appendix Table B1. Covariates Descriptions

Variable Description

Past use Minutes of computer usage from baseline survey
Age Age of respondent
# of siblings Number of siblings
# of young siblings Number of younger siblings
Sex 1 if male
Father lives home 1 if father lives at home
Father works home 1 if father works at home
Mother works home 1 if mother works at home
Home phone 1 if household has a phone
Home power 1 if household has electricity
Home car 1 if household has a car
Home moto 1 if household has a motorcycle
Past week home 1 if respondent used a computer at home last week
Past week school 1 if respondent used a computer at school last week
Past week cafe 1 if respondent used a computer at a cafe last week
Past week friend house 1 if respondent used a computer at a friend’s house last week
Past week other 1 if respondent used a computer elsewhere last week

Note: This table describes the covariates used in the empirical application.

Appendix Table B2. Spillover Bounds on Computer Use with Covariates (Parametric)

Direct Effect Spillover Effect Overall
(1) (2) (3) (4) Effect

τ̂ [0.19, 0.24] [-0.40, -0.08] [0.51, 0.57] [-0.13, 0.10] [-0.22, -0.07]
CI (0.11, 0.35) (-0.55, -0.05) (0.33, 0.76) (-0.18, 0.13) (-0.30, -0.04)
(0,0) X X X
(0,1) X X X
(1,0) X X X
(1,1) X X X

Note: This table presents direct and spillover effects under the exposure mapping Ti =

(Di,1{
∑

AijDj > 0}). First element of the exposure mapping Ti refers to the direct treatment

status and the second whether at least one friend received treatment. Columns (1) and (2) display

direct effects of winning the lottery for students with at least one treated friend and with none,

respectively. Columns (3) and (4) show spillover effects of having a treated friend for students

that won the lottery and did not, respectively. Last column displays overall effects comparing any

exposure to the intervention to none. Spillover bounds, denoted by τ̂ , are shown in brackets. The

bounds use logistic and quantile regression on the first stage. Imbens and Manski’s (2004) confidence

interval with c̄ = 1.645 are shown in parentheses below the bounds. For the confidence intervals,

we use standard errors with network HAC variance (optimal bandwidth b = 2).

37



Appendix Table B3. Spillover Bounds on Computer Use with Covariates (Post-Lasso)

Direct Effect Spillover Effect Overall
(1) (2) (3) (4) Effect

τ̂ [0.19, 0.24] [-0.32, -0.05] [0.24, 0.33] [0.03, 0.35] [-0.12, 0.06]
CI (0.11, 0.34) (-0.44, -0.03) (0.16, 0.44) (0.02, 0.48) (-0.17, 0.07)
(0,0) X X X
(0,1) X X X
(1,0) X X X
(1,1) X X X

Note: This table presents direct and spillover effects under the exposure mapping Ti =

(Di,1{
∑

AijDj > 0}). First element of the exposure mapping Ti refers to the direct treatment

status and the second whether at least one friend received treatment. Columns (1) and (2) display

direct effects of winning the lottery for students with at least one treated friend and with none,

respectively. Columns (3) and (4) show spillover effects of having a treated friend for students

that won the lottery and did not, respectively. Last column displays overall effects comparing any

exposure to the intervention to none. Spillover bounds, denoted by τ̂ , are shown in brackets. The

bounds incorporate post-lasso logistic and quantile regressions on the first stage. Imbens and

Manski’s (2004) confidence interval with c̄ = 1.645 are shown in parentheses below the bounds. For

the confidence intervals, we use standard errors with network HAC variance (optimal bandwidth

b = 2).

Appendix Table B4. Spillover Bounds on Computer Use with Covariates (Auto ML)

Direct Effect Spillover Effect Overall
(1) (2) (3) (4) Effect

τ̂ [0.05, 0.23] [-0.13, 0.26] [0.18, 0.32] [-0.37, 0.24] [-0.15, 0.25]
CI (0.04, 0.28) (-0.16, 0.32) (0.13, 0.41) (-0.48, 0.32) (-0.20, 0.34)
(0,0) X X X
(0,1) X X X
(1,0) X X X
(1,1) X X X

Note: This table presents direct and spillover effects under the exposure mapping Ti =

(Di,1{
∑

AijDj > 0}). First element of the exposure mapping Ti refers to the direct treatment

status and the second whether at least one friend received treatment. Columns (1) and (2) display

direct effects of winning the lottery for students with at least one treated friend and with none,

respectively. Columns (3) and (4) show spillover effects of having a treated friend for students

that won the lottery and did not, respectively. Last column displays overall effects comparing any

exposure to the intervention to none. Spillover bounds, denoted by τ̂ , are shown in brackets. The

bounds incorporate automatic search of machine learning classifiers and gradient boost-

ing quantile regression on the first stage. Imbens and Manski’s (2004) confidence interval with

c̄ = 1.645 are shown in parentheses below the bounds. For the confidence intervals, we use standard

errors with network HAC variance (optimal bandwidth b = 2).
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